564 research outputs found

    3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

    No full text
    Author Summary For studying the neural basis of perception and behavior, it would be ideal to directly monitor sensory-evoked excitation streams within neural circuits, at sub-cellular and millisecond resolution. To do so, reverse engineering approaches of reconstructing circuit anatomy and synaptic wiring have been suggested. The resulting anatomically realistic models may then allow for computer simulations (in silico experiments) of circuit function. A natural starting point for reconstructing neural circuits is a cortical column, which is thought to be an elementary functional unit of sensory cortices. In the vibrissal area of rodent somatosensory cortex, a cytoarchitectonic equivalent, designated as a ā€˜barrel columnā€™, has been described. By reconstructing the 3D geometry of almost 1,000 barrel columns, we show that the somatotopic layout of the vibrissal cortex is highly preserved across animals. This allows generating a standard cortex and registering neuron morphologies, obtained from different experiments, to their ā€˜trueā€™ location. Marking a crucial step towards reverse engineering of cortical circuits, the present study will allow estimating synaptic connectivity within an entire cortical area by structural overlap of registered axons and dendrites

    Treatment of immune-mediated temporal lobe epilepsy with GAD antibodies

    Get PDF
    AbstractPurposeTemporal lobe epilepsy with antibodies (abs) against the glutamic acid decarboxylase 65 isoform (GAD-TLE) is known as an immune-mediated neurological syndrome. Here we evaluate the therapy response to various immunotherapies and epilepsy surgery in this syndrome.MethodAll patients with GAD-TLE and follow-up data and stored serum and CSF samples, identified and treated at the Bonn centre from 2002 to 2010, were studied retrospectively. Seizure freedom for ā‰„1 year and reduction of ā‰„50%, i.e. therapy response, were assessed. GAD-ab titres and neuropsychological performances were documented prior and after individual interventions.ResultsThirteen patients with GAD-TLE were identified with the following seizure responses: corticosteroids (5 responders out of 11 treated patients); i.v. immunoglobulins (1/5), apheresis therapy (1/8); and natalizumab (1/1), selective amygdala-hippocampectomy (2/3). None of the patients achieved sustained seizure freedom apart from one patient. This patient was on antiepileptic drug treatment after discontinuation of immunotherapy.ConclusionThe seizure response to immunotherapies in patients with GAD-TLE was poor. Corticosteroids were the most effective regarding seizure response. Especially the poor effects of apheresis therapies support the idea that GAD-abs are not directly pathogenic. None of three patients was seizure-free after temporal lobe surgery suggesting that GAD-TLE patients respond worse than others to this type of intervention. Our results reflect the chronic course of the disease with low likelihood for patients with GAD-TLE to attain long-term seizure freedom

    Synaptic Cleft Segmentation in Non-Isotropic Volume Electron Microscopy of the Complete Drosophila Brain

    Full text link
    Neural circuit reconstruction at single synapse resolution is increasingly recognized as crucially important to decipher the function of biological nervous systems. Volume electron microscopy in serial transmission or scanning mode has been demonstrated to provide the necessary resolution to segment or trace all neurites and to annotate all synaptic connections. Automatic annotation of synaptic connections has been done successfully in near isotropic electron microscopy of vertebrate model organisms. Results on non-isotropic data in insect models, however, are not yet on par with human annotation. We designed a new 3D-U-Net architecture to optimally represent isotropic fields of view in non-isotropic data. We used regression on a signed distance transform of manually annotated synaptic clefts of the CREMI challenge dataset to train this model and observed significant improvement over the state of the art. We developed open source software for optimized parallel prediction on very large volumetric datasets and applied our model to predict synaptic clefts in a 50 tera-voxels dataset of the complete Drosophila brain. Our model generalizes well to areas far away from where training data was available

    Cognitive dysfunction in naturally occurring canine idiopathic epilepsy

    Get PDF
    Globally, epilepsy is a common serious brain disorder. In addition to seizure activity, epilepsy is associated with cognitive impairments including static cognitive impairments present at onset, progressive seizure-induced impairments and co-morbid dementia. Epilepsy occurs naturally in domestic dogs but its impact on canine cognition has yet to be studied, despite canine cognitive dysfunction (CCD) recognised as a spontaneous model of dementia. Here we use data from a psychometrically validated tool, the canine cognitive dysfunction rating (CCDR) scale, to compare cognitive dysfunction in dogs diagnosed with idiopathic epilepsy (IE) with controls while accounting for age. An online cross-sectional study resulted in a sample of 4051 dogs, of which n = 286 had been diagnosed with IE. Four factors were significantly associated with a diagnosis of CCD (above the diagnostic cut-off of CCDR ā‰„50): (i) epilepsy diagnosis: dogs with epilepsy were at higher risk; (ii) age: older dogs were at higher risk; (iii) weight: lighter dogs (kg) were at higher risk; (iv) training history: dogs with more exposure to training activities were at lower risk. Impairments in memory were most common in dogs with IE, but progression of impairments was not observed compared to controls. A significant interaction between epilepsy and age was identified, with IE dogs exhibiting a higher risk of CCD at a young age, while control dogs followed the expected pattern of low-risk throughout middle age, with risk increasing exponentially in geriatric years. Within the IE sub-population, dogs with a history of cluster seizures and high seizure frequency had higher CCDR scores. The age of onset, nature and progression of cognitive impairment in the current IE dogs appear divergent from those classically seen in CCD. Longitudinal monitoring of cognitive function from seizure onset is required to further characterise these impairments

    Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex

    Get PDF
    This is the second article in a series of three studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). Here, we report the number and distribution of NeuN-positive neurons within the C2, D2, and D3 TC projection columns in P27 rat somatosensory barrel cortex based on an exhaustive identification of 89ā€‰834 somata in a 1.15 mm3 volume of cortex. A single column contained 19ā€‰109 Ā± 444 neurons (17ā€‰560 Ā± 399 when normalized to a standard-size projection column). Neuron density differences along the vertical column axis delineated ā€œcytoarchitectonicā€ layers. The resulting neuron numbers per layer in the average column were 63 Ā± 10 (L1), 2039 Ā± 524 (L2), 3735 Ā± 905 (L3), 4447 Ā± 439 (L4), 1737 Ā± 251 (L5A), 2235 Ā± 99 (L5B), 3786 Ā± 168 (L6A), and 1066 Ā± 170 (L6B). These data were then used to derive the layer-specific action potential (AP) output of a projection column. The estimates confirmed previous reports suggesting that the ensembles of spiny L4 and thick-tufted pyramidal neurons emit the major fraction of APs of a column. The number of APs evoked in a column by a sensory stimulus (principal whisker deflection) was estimated as 4441 within 100 ms post-stimulus

    Preserving Differential Privacy in Convolutional Deep Belief Networks

    Full text link
    The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing epsilon-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions

    Cell Typeā€“Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex

    Get PDF
    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2ā€“6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90ā€“580 boutons per neuron); 2) pyramidal neurons in L3ā€“L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2ā€“4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types

    FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis

    Get PDF
    Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ

    Automated Detection and Segmentation of Synaptic Contacts in Nearly Isotropic Serial Electron Microscopy Images

    Get PDF
    We describe a protocol for fully automated detection and segmentation of asymmetric, presumed excitatory, synapses in serial electron microscopy images of the adult mammalian cerebral cortex, taken with the focused ion beam, scanning electron microscope (FIB/SEM). The procedure is based on interactive machine learning and only requires a few labeled synapses for training. The statistical learning is performed on geometrical features of 3D neighborhoods of each voxel and can fully exploit the high z-resolution of the data. On a quantitative validation dataset of 111 synapses in 409 images of 1948Ɨ1342 pixels with manual annotations by three independent experts the error rate of the algorithm was found to be comparable to that of the experts (0.92 recall at 0.89 precision). Our software offers a convenient interface for labeling the training data and the possibility to visualize and proofread the results in 3D. The source code, the test dataset and the ground truth annotation are freely available on the website http://www.ilastik.org/synapse-detection
    • ā€¦
    corecore